Abstract :
We study the minimal free resolution of a quadratic monomial ideal in the case where the resolution is linear. First, we focus on the squarefree case, namely that of an edge ideal. We provide an explicit minimal free resolution under the assumption that the graph associated with the edge ideal satisfies specific combinatorial conditions. In addition, we construct a regular cellular structure on the resolution. Finally, we extend our results to non-squarefree ideals by means of polarization.