Title of article :
Schur–Weyl duality for infinitesimal q-Schur algebras sq(2,r)1
Author/Authors :
Karin Erdmann، نويسنده , , Qiang Fu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
16
From page :
1099
To page :
1114
Abstract :
Using the result of [S.R. Doty, D.K. Nakano, K.M. Peters, Polynomial representations of Frobenius kernels of GL2, in: Contemp. Math., vol. 194, 1996, pp. 57–67; S. König, C. Xi, When is a cellular algebra quasi-hereditary? Math. Ann. 315 (1999) 281–293], we prove that a non-semisimple infinitesimal Schur algebra s(2,r)1 is not cellular. Furthermore, we determine the structure of the endomorphism ring of tensor space as a module for the infinitesimal Schur algebra s(2,r)1, up to Morita equivalence. Both results generalize to the quantum case.
Keywords :
Tilting modules , Cellular structure , Chebyshev polynomials , Schur–Weyl duality , Infinitesimal q-Schur algebras
Journal title :
Journal of Algebra
Serial Year :
2008
Journal title :
Journal of Algebra
Record number :
698710
Link To Document :
بازگشت