Title of article :
The Minimal Resolution Conjecture Original Research Article
Author/Authors :
Lorenzini A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1993
Pages :
31
From page :
5
To page :
35
Abstract :
By extending the ideal generation conjecture, we formulate the minimal resolution conjecture for a sufficiently generic set of points in imagen and we explicitly write out the conjectured values of the Betti numbers. We then relate the minimal resolution conjecture to the ideal generation conjecture and the Cohen-Macaulay type conjecture, and we prove the minimal resolution conjecture for (d + nn) − λ (1 ≤ λ ≤ n) points, for n + 2 points, and for (d − 1 + nn) points. We also prove the Cohen-Macaulay type conjecture for s points, with n + 1 ≤ s ≤ (2 + nn)! Finally, we recover information about the resolution of s − 1 or s + 1 points from that of S points.
Journal title :
Journal of Algebra
Serial Year :
1993
Journal title :
Journal of Algebra
Record number :
698943
Link To Document :
بازگشت