Title of article :
Row Reducing Quantum Matrices, the Quantum Determinant, and the Dieudonné Determinant Original Research Article
Author/Authors :
Horia C. Pop، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
22
From page :
318
To page :
339
Abstract :
We prove that row reducing a quantum matrix yields another quantum matrix for the same parameterq. This means that the elements of the new matrix satisfy the same relations as those of the original quantum matrix ringMq(n). As a corollary, we can prove that the image of the quantum determinant in the abelianization of the total ring of quotients ofMq(n) is equal to the Dieudonné determinant of the quantum matrix. A similar result is proved for the multiparameter quantum determinant.
Journal title :
Journal of Algebra
Serial Year :
1997
Journal title :
Journal of Algebra
Record number :
700506
Link To Document :
بازگشت