Title of article :
Invariants of 2×2-Matrices over Finite Fields
Author/Authors :
Dagmar M. Meyer and Larry Smith، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
7
From page :
504
To page :
510
Abstract :
Let q be the finite field with q elements, q=pν, p a prime, and Mat2.2( q) the vector space of 2×2-matrices over . The group GL(2, ) acts on Mat2,2( q) by conjugation. In this note, we determine the invariants of this action. In contrast to the case of an infinite field, where the trace and determinant generate the ring of invariants, several new invariants appear in the case of finite fields.
Keywords :
Power , primitive element , Golomb’s conjecture , Asymptotic formula , characteristic function , arithmetic function , primitive root , Jacobi sum. , Cyclic group
Journal title :
Finite Fields and Their Applications
Serial Year :
2002
Journal title :
Finite Fields and Their Applications
Record number :
701064
Link To Document :
بازگشت