Title of article :
Compressing Mappings on Primitive Sequences over Z/(2e) and Its Galois Extension,
Author/Authors :
Qi Wenfeng، نويسنده , , Zhu Xuanyong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
19
From page :
570
To page :
588
Abstract :
Let f(x) be a strongly primitive polynomial of degree n over Z/(2e), η(x0,x1,…,xe−2) a Boolean function of e−1 variables and (x0,x1,…,xe−1)=xe−1+η(x0,x1,…,xe−2)G (f(x),Z/(2e)) denotes the set of all sequences over Z/(2e) generated by f(x), F2∞ the set of all sequences over the binary field F2, then the compressing mapping is injective, that is, for , G(f(x),Z/(2e)), = if and only if Φ( )=Φ( ), i.e., ( 0,…, e−1)= ( 0,…, e−1) mod 2. In the second part of the paper, we generalize the above result over the Galois rings.
Keywords :
primitive polynomial , Galois ring , compressingmapping.1 , linear sequence
Journal title :
Finite Fields and Their Applications
Serial Year :
2002
Journal title :
Finite Fields and Their Applications
Record number :
701070
Link To Document :
بازگشت