Title of article :
Idempotents in group algebras and minimal abelian codes
Author/Authors :
Raul Antonio Ferraz، نويسنده , , César Polcino Milies، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
12
From page :
382
To page :
393
Abstract :
We compute the number of simple components of a semisimple finite abelian group algebra and determine all cases where this number is minimal; i.e. equal to the number of simple components of the rational group algebra of the same group. This result is used to compute idempotent generators of minimal abelian codes, extending results of Arora and Pruthi [S.K. Arora, M. Pruthi, Minimal cyclic codes of length 2pn, Finite Field Appl. 5 (1999) 177–187; M. Pruthi, S.K. Arora, Minimal codes of prime power length, Finite Field Appl. 3 (1997) 99–113]. We also show how to compute the dimension and weight of these codes in a simple way
Keywords :
Group algebra , Finite field , Minimal code , Abelian code
Journal title :
Finite Fields and Their Applications
Serial Year :
2007
Journal title :
Finite Fields and Their Applications
Record number :
701254
Link To Document :
بازگشت