Title of article :
Vandermonde sets and super-Vandermonde sets
Author/Authors :
Peter Sziklai ، نويسنده , , Marcella Tak?ts، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
12
From page :
1056
To page :
1067
Abstract :
Given a set T GF(q), T=t, wT is defined as the smallest positive integer k for which ∑y Tyk≠0. It can be shown that wT t always and wT t−1 if the characteristic p divides t. T is called a Vandermonde set if wT t−1 and a super-Vandermonde set if wT=t. This (extremal) algebraic property is interesting for its own right, but the original motivation comes from finite geometries. In this paper we classify small and large super-Vandermonde sets.
Keywords :
power sums , Vandermonde , finite fields
Journal title :
Finite Fields and Their Applications
Serial Year :
2008
Journal title :
Finite Fields and Their Applications
Record number :
701382
Link To Document :
بازگشت