Title of article :
Tensor Product Representations of General Linear Groups and Their Connections with Brauer Algebras Original Research Article
Author/Authors :
Benkart G.، نويسنده , , Chakrabarti M.، نويسنده , , Halverson T.، نويسنده , , Leduc R.، نويسنده , , Lee C. Y.، نويسنده , , Stroomer J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Pages :
39
From page :
529
To page :
567
Abstract :
For the complex general linear group G = GL(r, image) we investigate the tensor product module T= (circle times operatorp V)circle times operator(circle times operatorq V) of p copies of its natural representation V = imager and q copies of the dual spare V* of V. We describe the maximal vectors of T and from that obtain an explicit decomposition of T into its irreducible G-summands. Knowledge of the maximal vectors allows us to determine the centralizer algebra image of all transformations on T commuting with the action of G, to construct the irreducible image-representations, and to identify image with a certain subalgebra image(r)p,q of the Brauer algebra image(r)p+q.
Journal title :
Journal of Algebra
Serial Year :
1994
Journal title :
Journal of Algebra
Record number :
701807
Link To Document :
بازگشت