Title of article :
Triangular Decomposition of the Composition Algebra of the Kronecker Algebra Original Research Article
Author/Authors :
Pu Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
16
From page :
159
To page :
174
Abstract :
LetAbe a finite-dimensional hereditary algebra over a finite field, and letimage(A) andimage(A) be, respectively, the Ringel–Hall algebra and the composition algebra ofA. Definerdto be the element ∑[M]set membership, variantimage(A), where [M] runs over the isomorphism classes of the regularA-modules with dimension vectord. We prove thatrdand the exceptionalA-modules all lie inimage(A). LetKbe the Kronecker algebra,image(resp.image) the subalgebra ofimage(K) generated by the preprojective (resp. preinjective)K-modules, andimagethe subalgebra generated byr(n, n)forn≥0. Then we prove thatimage(K)=image·image·imageand thenimageis just the subalgebra ofimage(K) generated by all regular elements.
Journal title :
Journal of Algebra
Serial Year :
1996
Journal title :
Journal of Algebra
Record number :
702663
Link To Document :
بازگشت