Title of article :
UNIFORM CONVERGENCE OF SERIES ESTIMATORS OVER FUNCTION SPACES
Author/Authors :
Kyungchul Song، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
37
From page :
1463
To page :
1499
Abstract :
This paper considers a series estimator of E@a~Y!6l~X ! lN #, ~a,l! A L, indexed by function spaces, and establishes the estimator’s uniform convergence rate over lN R, a A, and l L, when A and L have a finite integral bracketing entropy+ The rate of convergence depends on the bracketing entropies of A and L in general+ In particular, we demonstrate that when each l L is locally uniformly L2-continuous in a parameter from a space of polynomial discrimination and the basis function vector pK in the series estimator keeps the smallest eigenvalue of E@ pK~l~X !!pK~l~X !!ʹ # above zero uniformly over l L, we can obtain the same convergence rate as that established by de Jong ~2002, Journal of Econometrics 111, 1–9!+
Journal title :
ECONOMETRIC THEORY
Serial Year :
2008
Journal title :
ECONOMETRIC THEORY
Record number :
707465
Link To Document :
بازگشت