Title of article :
LONG-TIME BEHAVIOR OF SOLUTIONS OF THE FAST DIFFUSION EQUATIONS WITH CRITICAL ABSORPTION TERMS
Author/Authors :
PEIHU SHI and MINGXIN WANG، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
16
From page :
529
To page :
544
Abstract :
This paper is devoted to the long-time behavior of solutions to the Cauchy problem of the porous medium equation ut = Δ(um) − up in Rn × (0,∞) with (1 − 2/n)+ < m < 1 and the critical exponent p = m + 2/n. For the strictly positive initial data u(x, 0) = O(1 + |x|)−k with n + mn(2 − n + nm)/(2[2 − m + mn(1 − m)]) k < 2/(1 − m), we prove that the solution of the above Cauchy problem converges to a fundamental solution of ut = Δ(um) with an additional logarithmic anomalous decay exponent in time as t→∞.
Journal title :
journal of the london mathematical society
Serial Year :
2006
Journal title :
journal of the london mathematical society
Record number :
708387
Link To Document :
بازگشت