Title of article :
CLUSTER ALGEBRAS OF FINITE TYPE AND POSITIVE SYMMETRIZABLE MATRICES
Author/Authors :
Michael Barot، نويسنده , , CHRISTOF GEISS and ANDREI ZELEVINSKY، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
20
From page :
545
To page :
564
Abstract :
The paper is motivated by an analogy between cluster algebras and Kac–Moody algebras: both theories share the same classification of finite type objects by familiar Cartan–Killing types. However, the underlying combinatorics beyond the two classifications is different: roughly speaking, Kac–Moody algebras are associated with (symmetrizable) Cartan matrices, while cluster algebras correspond to skew-symmetrizable matrices. We study an interplay between the two classes of matrices, in particular, establishing a new criterion for deciding whether a given skewsymmetrizable matrix gives rise to a cluster algebra of finite type.
Journal title :
journal of the london mathematical society
Serial Year :
2006
Journal title :
journal of the london mathematical society
Record number :
708388
Link To Document :
بازگشت