Abstract :
We show that every biorthogonal wavelet determines a representation by operators on Hilbert space satisfying simple identities, which captures the established relationship between orthogonal wavelets and Cuntz-algebra representations in that special case. Each of these representations is shown to have tractable finite-dimensional co-invariant doubly cyclic subspaces. Further, motivated by these representations, we introduce a general Fock-space Hilbert space construction which yields creation operators containing the Cuntz–Toeplitz isometries as a special case.