Abstract :
A two-dimensional Schrödinger operator with a constant magnetic field perturbed by a smooth compactly supported potential is considered. The spectrum of this operator consists of eigenvalues which accumulate to the Landau levels. We call the set of eigenvalues near the nth Landau level an nth eigenvalue cluster, and study the distribution of eigenvalues in the nth cluster as n→∞. A complete asymptotic expansion for the eigenvalue moments in the nth cluster is obtained and some coefficients of this expansion are computed. A trace formula involving the eigenvalue moments is obtained