Title of article :
A Bayesian model for multinomial sampling with misclassified data
Author/Authors :
M. Ruiz، نويسنده , , F. J. Gir?n، نويسنده , , C. J. Pérez، نويسنده , , J. Mart?n & C. Rojano، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
14
From page :
369
To page :
382
Abstract :
In this paper the issue of making inferences with misclassified data from a noisy multinomial process is addressed. A Bayesian model for making inferences about the proportions and the noise parameters is developed. The problem is reformulated in a more tractable form by introducing auxiliary or latent random vectors. This allows for an easy-to-implement Gibbs sampling-based algorithm to generate samples from the distributions of interest. An illustrative example related to elections is also presented.
Keywords :
Bayesian inference , Gibbs sampling , misclassified data , noisy multinomial process
Journal title :
JOURNAL OF APPLIED STATISTICS
Serial Year :
2008
Journal title :
JOURNAL OF APPLIED STATISTICS
Record number :
712202
Link To Document :
بازگشت