Title of article :
Nonparametric bootstrapping for hierarchical data
Author/Authors :
Shiquan Ren، نويسنده , , Hong Lai، نويسنده , , Wenjing Tong، نويسنده , , Mostafa Aminzadeh، نويسنده , , Xuezhang Hou & Shenghan Lai، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
Nonparametric bootstrapping for hierarchical data is relatively underdeveloped and not straightforward:
certainly it does not make sense to use simple nonparametric resampling, which treats all observations as
independent.We have provided some resampling strategies of hierarchical data, proved that the strategy of
nonparametric bootstrapping on the highest level (randomly sampling all other levels without replacement
within the highest level selected by randomly sampling the highest levels with replacement) is better than
that on lower levels, analyzed real data and performed simulation studies
Keywords :
Random effects model , Hierarchical data , nonparametric bootstrapping , Resampling schemes , unbalanced data
Journal title :
JOURNAL OF APPLIED STATISTICS
Journal title :
JOURNAL OF APPLIED STATISTICS