Title of article :
Bayesian and likelihood inference for cure rates based on defective inverse Gaussian regression models
Author/Authors :
Jeremy Balka، نويسنده , , Anthony F. Desmond&Paul D. McNicholas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
18
From page :
127
To page :
144
Abstract :
Failure time models are considered when there is a subpopulation of individuals that is immune, or not susceptible, to an event of interest. Such models are of considerable interest in biostatistics. The most common approach is to postulate a proportion p of immunes or long-term survivors and to use a mixture model [5]. This paper introduces the defective inverse Gaussian model as a cure model and examines the use of the Gibbs sampler together with a data augmentation algorithm to study Bayesian inferences both for the cured fraction and the regression parameters. The results of the Bayesian and likelihood approaches are illustrated on two real data sets.
Keywords :
cure rates , defective inverse Gaussian , Gibbs sampler , survival analysis
Journal title :
JOURNAL OF APPLIED STATISTICS
Serial Year :
2011
Journal title :
JOURNAL OF APPLIED STATISTICS
Record number :
712522
Link To Document :
بازگشت