Title of article :
Empirical null distribution-based modeling of multi-class differential gene expression detection
Author/Authors :
Xiting Cao، نويسنده , , Baolin Wu&Marshall I. Hertz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
11
From page :
347
To page :
357
Abstract :
In this paper,we study the multi-class differential gene expression detection for microarray data.We propose a likelihood-based approach to estimating an empirical null distribution to incorporate gene interactions and provide a more accurate false-positive control than the commonly used permutation or theoretical null distribution-based approach.We propose to rank important genes by p-values or local false discovery rate based on the estimated empirical null distribution. Through simulations and application to lung transplant microarray data, we illustrate the competitive performance of the proposed method.
Keywords :
differential expression detection , empirical Bayes modeling , False discovery rate , gene expressiondata , empirical null distribution
Journal title :
JOURNAL OF APPLIED STATISTICS
Serial Year :
2013
Journal title :
JOURNAL OF APPLIED STATISTICS
Record number :
712916
Link To Document :
بازگشت