Title of article :
Kummer Congruences and Formal Groups Original Research Article
Author/Authors :
Freije M. N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1993
Pages :
12
From page :
31
To page :
42
Abstract :
Let R be an integral domain and let f(X) = (f1(X), ..., fn(X)) be an n-tuple of power series in n variables X = (x1, ..., xn) such that dfj set membership, variant circled plus R[[X]]dxi, f(X) ≡ 0 (mod deg 1), and J(f) = ((∂fi/∂xJ(0)) is invertible over R. We can form the formal group Ff(X, Y) = f−1(f(X) + f(Y)). A priori, the coefficients of Ff are in K, the quotient ring of R. T. Honda (J. Math. Soc. Japan22, 1970, 213-246) and M. Hazewinkel ("Formal Groups and Applications," Academic Press, Orlando, FL, 1978) give some sufficient conditions for Ff(X, Y) to be defined over R in the form of functional equations for the coefficients of the fi. This paper considers the conserve question: Given a commutative formal group F(X, Y) defined over a ring R, what necessary conditions must be satisfied by the coefficients of the logarithm of F(X, Y)? These results generalize the results of C. Snyder (Rocky Mountain J. Math.15, No. 1. 1985, 1-11) in the one dimensional case.
Journal title :
Journal of Number Theory
Serial Year :
1993
Journal title :
Journal of Number Theory
Record number :
714197
Link To Document :
بازگشت