Title of article :
Variation of the Canonical Height On Elliptic-Surfaces II: : Local Analyticity Properties Original Research Article
Author/Authors :
Silverman J. H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Pages :
39
From page :
291
To page :
329
Abstract :
Let E → C be an elliptic surface defined over a number field K, let P: C → E be a section, and for each t set membership, variant C(image), let image(Pt) be the canonical height of Pt set membership, variant Et(image). Tate has used a global argument to show that, up to a bounded quantity, the function t maps to image(Pt) is equal to a Weil height function on C. In this paper we study the variation of the canonical local height image(Pt). In Part III we will use our local result to show that Tate′s bounded quantity is quite well-behaved as a function of t.
Journal title :
Journal of Number Theory
Serial Year :
1994
Journal title :
Journal of Number Theory
Record number :
714340
Link To Document :
بازگشت