Title of article :
Variation of the Canonical Height On Elliptic Surfaces III: Global Boundedness Properties Original Research Article
Author/Authors :
Silverman J. H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Pages :
23
From page :
330
To page :
352
Abstract :
Let E → C be an elliptic surface defined over a number field K, let P: C → E be a section, and for each t set membership, variant C(K), let image(Pt) be the canonical height of Pt set membership, variant Et (image). Tate has used a global argument to show that, up to a bounded quantity, the function t maps to image(Pt) is equal to a Weil height function hC(t) on C. In this paper we precisely describe the behavior of the difference image(Pt) − hC(t) as a function of t.
Journal title :
Journal of Number Theory
Serial Year :
1994
Journal title :
Journal of Number Theory
Record number :
714341
Link To Document :
بازگشت