Title of article :
On the Order of Finitely Generated Subgroups of image*(mod p) and Divisors ofp−1 Original Research Article
Author/Authors :
Francesco Pappalardi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
16
From page :
207
To page :
222
Abstract :
LetΓbe a finitely generated subgroup of image* with rankr. We study the size of the order Γp ofΓ mod pfor density-one sets of primes. Using a result on the scarcity of primespless-than-or-equals, slantxfor whichp−1 has a divisor in an interval of the type [y, y exp logτ y] (τnot, vert, similar0.15), we deduce that Γpgreater-or-equal, slantedpr/(r+1) exp logτ pfor almost allpand, assuming the Generalized Riemann Hypothesis, we show that Γpgreater-or-equal, slantedp/ψ(p) (ψ→∞) for almost allp. We also apply this to the Brown–Zassenhaus Conjecture concerned with minimal sets of generators for primitive roots.
Journal title :
Journal of Number Theory
Serial Year :
1996
Journal title :
Journal of Number Theory
Record number :
714548
Link To Document :
بازگشت