Title of article :
Transcendence and the Carlitz–Goss Gamma Function Original Research Article
Author/Authors :
Michel Mendès France، نويسنده , , Jia-Yan Yao ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
7
From page :
396
To page :
402
Abstract :
In this article, we show that a value of the Carlitz–Goss gamma function for the ringFq[X] is transcendental over the fieldFq(X) if and only if the argument is not an element of image={0, 1, 2, …}. We also answer a question of J.-P. Allouche, and we show the transcendence of monomials built on the values of the Carlitz–Goss gamma function. This concludes the transcendence study of the values of this function initiated and developed by D. Thakur and pursued by A. Thiery, J. Yu, and L. Denis and J.-P. Allouche. The proof of our result, as that of J.-P. Allouche, uses derivation of formal power series and the theorem of G. Christol, T. Kamae, M. Mendès France, and G. Rauzy.
Journal title :
Journal of Number Theory
Serial Year :
1997
Journal title :
Journal of Number Theory
Record number :
714713
Link To Document :
بازگشت