Title of article :
Classes réalisables par des extensions métacycliques non abéliennes et éléments de Stickelberger Original Research Article
Author/Authors :
Bouchaïb Sodaïgui، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
9
From page :
87
To page :
95
Abstract :
Letkbe a number field,Okits ring of integers,Γa nonabelian metacyclic group of orderlq, wherel,qare prime numbers. Assume thatkand thelqth cyclotomic field of image are linearly disjoint over image. Let image be a maximalOk-order ink[1] containingOk[Γ],image(image) its class group. We determine the set of elements ofimage(image) which are realizable by some tamely ramified extensions with Galois groups isomorphic toΓusing some Stickelberger elements, and we prove that it is a subgroup ofimage(image).
Journal title :
Journal of Number Theory
Serial Year :
1997
Journal title :
Journal of Number Theory
Record number :
714739
Link To Document :
بازگشت