Title of article :
On the Value Distribution of Arithmetic Functions Original Research Article
Author/Authors :
J. W. Sander، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
19
From page :
51
To page :
69
Abstract :
In part II of a series of articles on the least common multiple, the central object of investigation was a particular integer-valued arithmetic functiong1(n). The most interesting problem there was the value distribution ofg1(n). We proved that the counting function card{nless-than-or-equals, slantx: g1(n)less-than-or-equals, slantd} has orderod(x) for any fixedd. A characteristic feature ofg1(n) is its so-called super-periodicity which will be discussed here. An integer-valued arithmetic functiong(n) is calledsuper-periodic, if there is a sequence (rj) of positive integers withrjgreater-or-equal, slanted2 (jgreater-or-equal, slanted2) such that, settingRkcolon, equals∏kj=1 rj,g(rRk+j)greater-or-equal, slantedg((r−1) Rk+j) for allkgreater-or-equal, slanted1, 1less-than-or-equals, slantr
Journal title :
Journal of Number Theory
Serial Year :
1997
Journal title :
Journal of Number Theory
Record number :
714763
بازگشت