Title of article :
On Highly Factorable Numbers Original Research Article
Author/Authors :
Jun Kyo Kim، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
16
From page :
76
To page :
91
Abstract :
For a positive integern, letf(n) be the number of multiplicative partions ofn. We say that a nutural numbernis highly factorable iff(m)ajthenf(npj/pi)greater-or-equal, slantedf(n). Using this fact, we prove the conjecture of Canfield, Erdimages, and Pormerance: for each fixedk, ifnis a large highly factorable number then there are asymptotically exactly 1/k(k+1) of the exponents ofnwhich are equal tok. We also answer the questions posed by Canfieldet al.: ifn,n′ are consecutive highly factorable numbers, then does it follown′/n→1 andf(n′)/f(n)→1
Keywords :
multiplicative partitions. , partitions
Journal title :
Journal of Number Theory
Serial Year :
1998
Journal title :
Journal of Number Theory
Record number :
714861
Link To Document :
بازگشت