Title of article :
The Number of k-Sums Modulo k Original Research Article
Author/Authors :
Béla Bollob?s، نويسنده , , IMRE LEADER and DONA STRAUSS، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
9
From page :
27
To page :
35
Abstract :
Let a1, …, ar be a sequence of elements of imagek, the integers modulo k. Calling the sum of k terms of the sequence a k-sum, how small can the set of k-sums be? Our aim in this paper is to show that if 0 is not a k-sum then there are at least r−k+1 k-sums. This result, which is best possible, extends the Erdimages–Ginzburg–Ziv theorem, which states that if r=2k−1 then 0 is a k-sum. We also show that the same result holds in any abelian group of order k, and make some related conjectures.
Journal title :
Journal of Number Theory
Serial Year :
1999
Journal title :
Journal of Number Theory
Record number :
714989
Link To Document :
بازگشت