Title of article :
Asymptotically Exact Heuristics for (Near) Primitive Roots Original Research Article
Author/Authors :
Pieter Moree، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
27
From page :
155
To page :
181
Abstract :
Let gset membership, variantimage\{−1, 0, 1}. Let p be a prime. Let ordp(g) denote the exponent of p in the canonical factorization of g. If ordp(g)=0, we define rg(p)=[(image/pimage)*: left angle bracketg mod pright-pointing angle bracket], that is, rg(p) is the residual index mod p of g. For an arbitrary natural number t we consider the set Ng, t of primes p with ordp(g)=0 and rg(p)=t. Write g=±gh0, where g0 is positive and not an exact power of a rational. We introduce a function wg, t(p)set membership, variant{0, 1, 2}, for which it is proved, under the Generalized Riemann Hypothesis (GRH), that[formula]where Ng, t(x) is the counting function for Ng, t . This modifies the naive and, under GRH, false heuristic in which one takes wg, t(p)=1.
Keywords :
primitive root , Heuristic , residual index.
Journal title :
Journal of Number Theory
Serial Year :
2000
Journal title :
Journal of Number Theory
Record number :
715092
Link To Document :
بازگشت