Title of article :
Supersingular Abelian Varieties over Finite Fields Original Research Article
Author/Authors :
Hui June Zhu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
17
From page :
61
To page :
77
Abstract :
Let A be a supersingular abelian variety defined over a finite field k. We give an approximate description of the structure of the group A(k) of k-rational points of A in terms of the characteristic polynomial f of the Frobenius endomorphism of A relative to k. Write f=∏ geii for distinct monic irreducible polynomials gi and positive integers ei. We show that there is a group homomorphism phi: A(k)→∏ (Z/gi(1) Z)ei that is “almost” an isomorphism in the sense that the sizes of the kernel and the cokernel of phi are bounded by an explicit function of dim A.
Keywords :
Finite field , supersingular abelian variety , Mertens theorem.
Journal title :
Journal of Number Theory
Serial Year :
2001
Journal title :
Journal of Number Theory
Record number :
715146
Link To Document :
بازگشت