Title of article :
A Proof of a Partition Conjecture of Bateman and Erdimages Original Research Article
Author/Authors :
Jason P. Bell، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
10
From page :
144
To page :
153
Abstract :
Bateman and Erdimages found necessary and sufficient conditions on a set A for the kth differences of the partitions of n with parts in A, p(k)A(n), to eventually be positive; moreover, they showed that when these conditions occur p(k+1)A(n)/p(k)A(n) tends to zero as n tends to infinity. Bateman and Erdimages conjectured that the ratio p(k+1)A(n)/p(k)A(n)=O(n−1/2). We prove this conjecture.
Keywords :
asymptotic enumeration , partitions.
Journal title :
Journal of Number Theory
Serial Year :
2001
Journal title :
Journal of Number Theory
Record number :
715170
Link To Document :
بازگشت