Title of article :
A Converse Theorem for Epsilon Factors, Original Research Article
Author/Authors :
P. Anuradha Kameswari، نويسنده , , Rajat Tandon، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
We prove the following theorem: Let F be a nonarchimedean local field of characteristic zero and K a quadratic extension of F. Let S be the set of characters of K* trivial on F*. Let χ1 and χ2 be two characters of K* such that χ1 mid F*=χ2 mid F*≠1. Let ψ be a nontrivial additive character of F and ψK=ψring operatortrK/F. If var epsilon(χ1λ, ψK)=var epsilon(χ2λ, ψK) for all λset membership, variantS then χ1 and χ2 agree on all units in the ring of integers in K and on all elements of trace zero. If, in addition, the conductor of χ1 mid F* is not zero then χ1=χ2.
Keywords :
local fields , CHARACTERS , epsilon factors.
Journal title :
Journal of Number Theory
Journal title :
Journal of Number Theory