Title of article :
Transcendence of Sturmian or Morphic Continued Fractions Original Research Article
Author/Authors :
J. -P. Allouche، نويسنده , , J. L. Davison، نويسنده , , M. Queffelec and G. Zimmerer، نويسنده , , L. Q. Zamboni، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
We prove, using a theorem of W. Schmidt, that if the sequence of partial quotients of the continued fraction expansion of a positive irrational real number takes only two values, and begins with arbitrary long blocks which are “almost squares,” then this number is either quadratic or transcendental. This result applies in particular to real numbers whose partial quotients form a Sturmian (or quasi-Sturmian) sequence, or are given by the sequence (1+(left floornαright floor mod 2))ngreater-or-equal, slanted0, or are a “repetitive” fixed point of a binary morphism satisfying some technical conditions.
Journal title :
Journal of Number Theory
Journal title :
Journal of Number Theory