Title of article :
Finite Arithmetic Subgroups of GLn, II Original Research Article
Author/Authors :
Marcin Mazur، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
20
From page :
67
To page :
86
Abstract :
We continue our investigation on the conjecture of Y. Kitaoka that if a finite subgroup G of GLn(OK) is invariant under the action ofGal(K/image) then it is contained in GLn(Kab). Here OK is the ring of integers in a finite Galois extension K of image and Kab is the maximal abelian subextension of K. We give a very precise description of a hypothetical counterexample of minimal order for minimal possible n. Using it we prove the conjecture for n=3 and give a new, simplified proof for n=2.
Journal title :
Journal of Number Theory
Serial Year :
2002
Journal title :
Journal of Number Theory
Record number :
715273
Link To Document :
بازگشت