Title of article :
Higher Heegner points on elliptic curves over function fields
Author/Authors :
Florian Breuer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
12
From page :
315
To page :
326
Abstract :
Let E be a modular elliptic curve defined over a rational function field k of odd characteristic. We construct a sequence of Heegner points on E, defined over a -tower of finite extensions of k, and show that these Heegner points generate a group of infinite rank. This is a function field analogue of a result of Cornut and Vatsal.
Keywords :
elliptic curves , Heegner points , Drinfeld modular curves
Journal title :
Journal of Number Theory
Serial Year :
2004
Journal title :
Journal of Number Theory
Record number :
715547
Link To Document :
بازگشت