Title of article :
Certain series attached to an even number of elliptic modular forms
Author/Authors :
Shin-ichiro Mizumoto، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
16
From page :
134
To page :
149
Abstract :
For j=1,…,n let fj(z) and gj(z) be holomorphic modular forms for SL2(Z) such that fj(z)gj(z) is a cusp form. We define a series whose terms are expressed by the Fourier coefficients of the above modular forms and the Mellin transform of the product of modified Bessel functions. We prove the meromorphic continuation and the functional equations of the series via a Rankin–Selberg-type integral involving a pullback of a certain Eisenstein series for the Siegel modular group of degree n.
Keywords :
Rankin–Selberg integrals , Siegel modular forms , Elliptic modular forms , Functional equations , Eisenstein series
Journal title :
Journal of Number Theory
Serial Year :
2004
Journal title :
Journal of Number Theory
Record number :
715560
Link To Document :
بازگشت