Title of article :
Universally bad integers and the 2-adics
Author/Authors :
S.J Eigen، نويسنده , , Y Ito، نويسنده , , V.S Prasad، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
13
From page :
322
To page :
334
Abstract :
In his 1964 paper, de Bruijn (Math. Comp. 18 (1964) 537) called a pair (a,b) of positive odd integers good, if , where is the set of nonnegative integers whose 4-adic expansion has only 0ʹs and 1ʹs, otherwise he called the pair (a,b) bad. Using the 2-adic integers we obtain a characterization of all bad pairs. A positive odd integer u is universally bad if (ua,b) is bad for all pairs of positive odd integers a and b. De Bruijn showed that all positive integers of the form u=2k+1 are universally bad. We apply our characterization of bad pairs to give another proof of this result of de Bruijn, and to show that all integers of the form u=φpk(4) are universally bad, where p is prime and φn(x) is the nth cyclotomic polynomial. We consider a new class of integers we call de Bruijn universally bad integers and obtain a characterization of such positive integers. We apply this characterization to show that the universally bad integers u=φpk(4) are in fact de Bruijn universally bad for all primes p>2. Furthermore, we show that the universally bad integers φ2k(4), and more generally, those of the form 4k+1, are not de Bruijn universally bad.
Journal title :
Journal of Number Theory
Serial Year :
2004
Journal title :
Journal of Number Theory
Record number :
715614
Link To Document :
بازگشت