Title of article :
On the diophantine equation x2+Dm=pn
Author/Authors :
Pingzhi Yuan، نويسنده , , Yongzhong Hu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
10
From page :
144
To page :
153
Abstract :
Let D>2 be a positive integer, and let p be an odd prime not dividing D. In this paper, using the deep result of Bilu, Hanrot and Voutier (i.e., the existence of primitive prime factors of Lucas and Lehmer sequences), by computing Jacobiʹs symbols and using elementary arguments, we prove that: if (D,p)≠(4,5),(2,5), then the diophantine equation x2+Dm=pn has at most two positive integer solutions (x,m,n). Moreover, both x2+4m=5n and x2+2m=5n have exactly three positive integer solutions (x,m,n).
Keywords :
Generalized Ramanujan–Nagell equations , Primitive prime factors , Lucas and Lehmersequences
Journal title :
Journal of Number Theory
Serial Year :
2005
Journal title :
Journal of Number Theory
Record number :
715687
Link To Document :
بازگشت