Title of article :
Simultaneous orderings in function fields
Author/Authors :
David Adam، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
11
From page :
287
To page :
297
Abstract :
For every Dedekind domain R, Bhargava defined the factorials of a subset S of R by introducing the notion of -ordering of S, for every maximal ideal of R. We study the existence of simultaneous ordering in the case S=R=OK, where is the ring of integers of a function field K over a finite field . We show, that when is the ring of integers of an imaginary quadratic extension K of , , then there exists a simultaneous ordering if and only if degD 1.
Journal title :
Journal of Number Theory
Serial Year :
2005
Journal title :
Journal of Number Theory
Record number :
715707
Link To Document :
بازگشت