Title of article :
Diophantine equations with products of consecutive terms in Lucas sequences Original Research Article
Author/Authors :
F. LUCA، نويسنده , , T.N. Shorey، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
14
From page :
298
To page :
311
Abstract :
In this paper, we show that if (un)ngreater-or-equal, slanted1 is a Lucas sequence, then the Diophantine equation image in integers ngreater-or-equal, slanted1, kgreater-or-equal, slanted1, mgreater-or-equal, slanted2 and y with y>1 has only finitely many solutions. We also determine all such solutions when (un)ngreater-or-equal, slanted1 is the sequence of Fibonacci numbers and when un=(xn-1)/(x-1) for all ngreater-or-equal, slanted1 with some integer x>1.
Keywords :
Arithmetic progressions , Lucas Sequences , Primitive divisors
Journal title :
Journal of Number Theory
Serial Year :
2005
Journal title :
Journal of Number Theory
Record number :
715745
Link To Document :
بازگشت