Title of article :
Integer solutions to decomposable form inequalities Original Research Article
Author/Authors :
Zhihua Chen and Nadine Aubry، نويسنده , , Min Ru، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
13
From page :
58
To page :
70
Abstract :
This paper obtains a result on the finiteness of the number of integer solutions to decomposable form inequalities. Let k be a number field and let F(X1,...,Xm) be a non-degenerate decomposable form with coefficients in k. We prove that, for every finite set of places S of k containing the archimedean places of k, for each real number image and for each constant c>0, the inequalityimagehas only finitely many image-non-proportional solutions.
Keywords :
Decomposable form inequality , Integer solutions , Schmidt’ssubspace theorem , Diophantine approximations
Journal title :
Journal of Number Theory
Serial Year :
2005
Journal title :
Journal of Number Theory
Record number :
715753
Link To Document :
بازگشت