Title of article :
A logarithm type mean value theorem of the Riemann zeta function Original Research Article
Author/Authors :
Xia-Qi Ding، نويسنده , , Shao-Ji Feng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
7
From page :
206
To page :
212
Abstract :
For any integer Kgreater-or-equal, slanted2 and positive integer h, we investigate the mean value of ζ(σ+it)2k×loghζ(σ+it) for all real number 01−1/K. In case K=2, h=1, this has been studied by Wang in [F.T. Wang, A mean value theorem of the Riemann zeta function, Quart. J. Math. Oxford Ser. 18 (1947) 1–3]. In this note, we give a new brief proof of Wangʹs theorem, and, with this method, generalize it to the general case naturally.
Keywords :
Riemann zeta function , Mean value theorem , Logarithm
Journal title :
Journal of Number Theory
Serial Year :
2006
Journal title :
Journal of Number Theory
Record number :
715873
Link To Document :
بازگشت