Title of article :
Convolution identities and lacunary recurrences for Bernoulli numbers Original Research Article
Author/Authors :
Takashi Agoh، نويسنده , , Karl Dilcher، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
18
From page :
105
To page :
122
Abstract :
We extend Eulerʹs well-known quadratic recurrence relation for Bernoulli numbers, which can be written in symbolic notation as (B0+B0)n=−nBn−1−(n−1)Bn, to obtain explicit expressions for (Bk+Bm)n with arbitrary fixed integers k,mgreater-or-equal, slanted0. The proof uses convolution identities for Stirling numbers of the second kind and for sums of powers of integers, both involving Bernoulli numbers. As consequences we obtain new types of quadratic recurrence relations, one of which gives B6k depending only on B2k,B2k+2,…,B4k.
Keywords :
a`
Journal title :
Journal of Number Theory
Serial Year :
2007
Journal title :
Journal of Number Theory
Record number :
715967
Link To Document :
بازگشت