Title of article :
A mean value theorem for discriminants of abelian extensions of a number field Original Research Article
Author/Authors :
Boris A. Datskovsky، نويسنده , , Behailu Mammo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
25
From page :
301
To page :
325
Abstract :
Let k be an algebraic number field and let N(k,Cℓ;m) denote the number of abelian extensions K of k with G(K/k)congruent withCℓ, the cyclic group of prime order ℓ, and the relative discriminant image of norm equal to m. In this paper, we derive an asymptotic formula for ∑mless-than-or-equals, slantXN(k,Cℓ;m) using the class field theory and a method, developed by Wright. We show that our result is identical to a result of Cohen, Diaz y Diaz and Olivier, obtained by methods of classical algebraic number theory, although our methods allow for a more elegant treatment and reduce a global calculation to a series of local calculations.
Keywords :
Cyclic extensions , Discriminant , Conductor
Journal title :
Journal of Number Theory
Serial Year :
2007
Journal title :
Journal of Number Theory
Record number :
716063
Link To Document :
بازگشت