Title of article :
Möbius inversion formulas for flows of arithmetic semigroups Original Research Article
Author/Authors :
Manuel Benito، نويسنده , , Luis M. Navas، نويسنده , , Juan L. Varona، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
We define a convolution-like operator which transforms functions on a space X via functions on an arithmetical semigroup S, when there is an action or flow of S on X. This operator includes the well-known classical Möbius transforms and associated inversion formulas as special cases. It is defined in a sufficiently general context so as to emphasize the universal and functorial aspects of arithmetical Möbius inversion. We give general analytic conditions guaranteeing the existence of the transform and the validity of the corresponding inversion formulas, in terms of operators on certain function spaces. A number of examples are studied that illustrate the advantages of the convolutional point of view for obtaining new inversion formulas.
Keywords :
M?bius transform , Dirichlet convolution , Inversion formula , M?bius function
Journal title :
Journal of Number Theory
Journal title :
Journal of Number Theory