Author/Authors :
M. Deléglise، نويسنده , , M.O. Hernane، نويسنده , , J.-L. Nicolas، نويسنده ,
Abstract :
The Kalmár function K(n) counts the factorizations n=x1x2…xr with xigreater-or-equal, slanted2 (1less-than-or-equals, slantiless-than-or-equals, slantr). Its Dirichlet series is image where ζ(s) denotes the Riemann ζ function. Let ρ=1.728… be the root greater than 1 of the equation ζ(s)=2. Improving on preceding results of Kalmár, Hille, Erdős, Evans, and Klazar and Luca, we show that there exist two constants C5 and C6 such that, for all n, image holds, while, for infinitely many nʹs, image.
An integer N is called a K-champion number if M
Keywords :
Kalm?r’s function , Factorisatio numerorum , Champion numbers , optimization , Highly composite numbers
Journal title :
Journal of Number Theory
Journal title :
Journal of Number Theory