Title of article :
Testing ignorable missingness in estimating equation approaches for longitudinal data
Author/Authors :
Qu، Annie نويسنده , , X.-K.Song، Peter نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
-840
From page :
841
To page :
0
Abstract :
We address the matter of determining whether or not missing data in longitudinal studies are ignorable with regard to quasilikelihood or estimating equations approaches.This involves testing for whether or not the zero-mean property of estimating equations holds true. Chen & Little (1999) proposed testing for significant differences among parameter estimators calculated from sample subsets with different patterns of missing data, whereas we propose a more unified generalised score-type test. This avoids exhaustive estimation of parameters for each missing-data pattern, testing instead with a single quadratic score test statistic whether or not there is a common parameter under which the means of all the pattern-specific estimating equations are zero. Comparisons are made for the two approaches with both simulations and real data examples.
Keywords :
Schizophrenia trial , Quadratic inference function , Generalised estimating equation , Ignorable missingness , Goodness-of-fit test
Journal title :
Biometrika
Serial Year :
2002
Journal title :
Biometrika
Record number :
71751
Link To Document :
بازگشت