Title of article :
Linear Maps Preserving the Closure of Numerical Range on Nest Algebras with Maximal Atomic Nest
Author/Authors :
Cui، Jianlian نويسنده , , Hou، Jinchuan نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-252
From page :
253
To page :
0
Abstract :
Let N be a maximal atomic nest on Hilbert space H Alg(N) denote the associated nest algebra. We prove that a weakly continuous and surjective linear map (phi) : Alg(N) - Alg(N) preserves the closure of numerical range if and only if there exists a unitary operator U (element of) B(H) such that phi(T) = UTU* for every T (element of) Alg(N) or (phi)(T) = UT^(tr)U* for every T (element of) Alg(N), where T^(tr) denotes the transpose of T relative to an arbitrary but fixed base of H. As applications, we get the characterizations of the numerical range or numerical radius preservers on Alg(N). The surjective linear maps on the diagonal algebras of atomic nest algebras preserving the closure of numerical range or preserving the numerical range (radius) are also characterized.
Keywords :
Nest algebra , Linear preserver , Numerical range
Journal title :
INTEGRAL EQUATIONS AND OPERATOR THEORY
Serial Year :
2003
Journal title :
INTEGRAL EQUATIONS AND OPERATOR THEORY
Record number :
72443
Link To Document :
بازگشت