Title of article :
Weyl’s Theorem for Algebraically Paranormal Operators
Author/Authors :
Raul E. Curto، نويسنده , , Min Han، Young نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-306
From page :
307
To page :
0
Abstract :
Let T be an algebraically paranormal operator acting on Hilbert space. We prove : (i) Weyl’s theorem holds for f(T) for every f (element of) H((sigma)(T)); (ii) a-Browder’s theorem holds for f(S) for every S (precedes) T and f (element of) H((sigma)(S)); (iii) the spectral mapping theorem holds for the Weyl spectrum of T and for the essential approximate point spectrum of T.
Keywords :
Weyl’s theorem , Browder’s theorem , a-Browder’s theorem , algebraically paranormal operator , single valued extension property
Journal title :
INTEGRAL EQUATIONS AND OPERATOR THEORY
Serial Year :
2003
Journal title :
INTEGRAL EQUATIONS AND OPERATOR THEORY
Record number :
72471
Link To Document :
بازگشت