Title of article :
Cohomology of Complex Torus Bundles Associated to Cocycles
Author/Authors :
Lee، Min Ho نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-838
From page :
839
To page :
0
Abstract :
Equivariant holomorphic maps of Hermitian symmetric domains into Siegel upper half spaces can be used to construct families of abelian varieties parametrized by locally symmetric spaces, which can be regarded as complex torus bundles over the parameter spaces. We extend the construction of such torus bundles using 2-cocycles of discrete subgroups of the semisimple Lie groups associated to the given symmetric domains and investigate some of their properties. In particular, we determine their cohomology along the fibers.
Keywords :
Fermat numbers , Fibonacci numbers , quasi-valuation , metrizable , topological ring , inverse limit , completion , p-adic , diophantine equation , prime integers
Journal title :
CANADIAN JOURNAL OF MATHEMATICS
Serial Year :
2003
Journal title :
CANADIAN JOURNAL OF MATHEMATICS
Record number :
72481
Link To Document :
بازگشت